Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT.

نویسندگان

  • N Matsumoto
  • D S Berman
  • P B Kavanagh
  • J Gerlach
  • S W Hayes
  • H C Lewin
  • J D Friedman
  • G Germano
چکیده

UNLABELLED Patient motion during myocardial perfusion SPECT can produce images that show artifactual perfusion defects. The relationship between the degree of motion and the extent of artifactual perfusion defects is not clear for either single- or double-head detectors. Using both single- and double-head detectors and quantitative perfusion SPECT (QPS) software, we studied the pattern and extent of defects induced by simulated motion and validated a new automatic motion-correction program for myocardial perfusion SPECT. METHODS Vertical motion was simulated by upward shifting of the raw projection datasets in a returning pattern (bounce) and in a nonreturning pattern at 3 different phases of the SPECT acquisition (early, middle, and late), whereas upward creep was simulated by uniform shifting throughout the acquisition. Lateral motion was similarly simulated by left shifting of the raw projection datasets in a returning pattern and in a nonreturning pattern. Simulations were performed using single- and double-head detectors, and simulated motion was applied to projection images from 8 patients who had normal 99mTc-sestamibi SPECT findings. Additionally, images from 130 patients with actual clinical motion were assessed before and after motion correction. The extent of perfusion defects was assessed by QPS, and a 20-segment, 5-point scoring system was used to assess the effect of motion on the presence and extent of perfusion defects. RESULTS Of 12 bounce simulations, the bouncing motion failed to produce significant (>3%) perfusion defects with either the single- or the double-head detector. With the single-head detector, early shifting created the largest defect, whereas with the double-head detector, shifting during the middle of the acquisition created the largest defect. With regard to upward creep, defects were of larger extent with the double- than the single-head detector. With the single-head detector, 8 of 20 simulated motion patterns yielded significant perfusion defects of the left ventricle, 7 (88%) of which were significantly improved after motion correction. With the double-head detector, 12 of 20 patterns yielded significant defects, all of which improved significantly after correction. Of 2,600 segments in the 130 patients with actual clinical motion, only 1.3% (30/2,259) of segments that were considered normal (score = 0 or 1) changed to abnormal (score = 2-4) after motion correction, whereas 27% (92/341) of abnormal segments were reclassified as normal after motion correction. CONCLUSION Artifactual perfusion defects created by simulated motion are a function of the time, degree, and type of motion and the number of camera detectors. Application of an automatic motion-correction algorithm effectively decreases motion artifacts on myocardial perfusion SPECT images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of simulated patient motion and its effect on myocardial perfusion SPECT using two reconstruction methods (Filtered Backprojection;FBP and Iterative method) [Persian]

Introduction: Motion of the patient during myocardial perfusion SPECT could potentially results in false perfusion defects. The effect of different reconstruction methods on these artifacts is not studied. Clarification of the relation between the extent, severity and duration of motion with the resultant artifacts may be helpful in designing special soft wares for motion correction. This...

متن کامل

اصلاح حرکت در تصویربرداری اسپکت میوکارد با استفاده از مدل‌سازی منحنی چند جمله ای

Background and purpose: Patient motion during myocardial perfusion SPECT can produce artifacts in reconstructed images which might affect clinical diagnosis. This paper attempts to present a new approach for the detection and correction of cardiac motion utilizing the data obtained during the imaging process. Materials and methods: Our method quantifies motion through polynomial curves modelin...

متن کامل

Comparison of the myocardial perfusion and wall motion results by ECG-Gated 99mTc-MIBI SPECT, before and after CABG for evaluation of myocardial viability [Persian]

It is of value to determine the amount of viable myocardial tissue in patients suffering from chronic coronary artery disease and ventricular dysfunction. Having the capability of evaluating both myocardial perfusion and function, simultaneously, myocardial scanning by ECG-Gated is an appropriate method for this purpose. The aim of this study was to compare the results of myocardial perfu...

متن کامل

CLINICAL INVESTIGATIONS Quantitative Assessment of Motion Artifacts and Validation of a New Motion-Correction Program for Myocardial Perfusion SPECT

Patient motion during myocardial perfusion SPECT can produce images that show artifactual perfusion defects. The relationship between the degree of motion and the extent of artifactual perfusion defects is not clear for either singleor double-head detectors. Using both singleand double-head detectors and quantitative perfusion SPECT (QPS) software, we studied the pattern and extent of defects i...

متن کامل

Attenuation correction in myocardial perfusion SPECT using sequential transmission - emission scanning with 99mTc [Persain]

Introduction: Nowadays, Imaging of the myocardial perfusion (MPI) using the single photon emission tomography (SPET) in the diagnosis of coronary artery disease, especially myocardial ischemia, is of great importance. In contrast to the coronary artery angiography, MPI is non-invasive, less expensive and more physiological. Unfortunately, this image is affected by the some artifacts. Thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2001